EC6404 LINEAR INTEGRATED CIRCUITS LT P C

9

9

UNIT I BASICS OF OPERATIONAL AMPLIFIERS

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps – Ideal Operational Amplifier – General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations.

UNIT II APPLICATIONS OF OPERATIONAL AMPLIFIERS 9

Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters.

UNIT III ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair – Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing.

UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS 9

Analog and Digital Data Conversions, D/A converter – specifications – weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R - 2R Ladder types – switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications – Flash type – Successive Approximation type – Single Slope type – Dual Slope type – A/D Converter using Voltage-to-Time Conversion – Over-sampling A/D Converters.

UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators – IC 723 general purpose regulator – Monolithic switching regulator, Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto-couplers and fibre optic IC.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2000.

2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 3rd Edition, Tata Mc Graw-Hill, 2007.

REFERENCES:

1. Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2001.

2. Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition, PHI, 2001.

3. B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001

4. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 2005.

5. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.

6. William D.Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education, 2004.

7. S.Salivahanan & V.S. Kanchana Bhaskaran, "Linear Integrated Circuits", TMH, 2008.

EC6412 LINEAR INTEGRATED CIRCUITS LABORATORYL T P C0 0 3 2OBJECTIVES:

- To expose the students to linear and integrated circuits
- To understand the basics of linear integrated circuits and available ICs
- To understand characteristics of operational amplifier.
- To apply operational amplifiers in linear and nonlinear applications.
- To acquire the basic knowledge of special function IC.
- To use PICE software for circuit design

LIST OF EXPERIMENTS: DESIGN AND TESTING OF

- 1. Inverting, Non inverting and Differential amplifiers.
- 2. Integrator and Differentiator.
- 3. Instrumentation amplifier
- 4. Active low-pass, High-pass and band-pass filters.
- 5. Astable & Monostable multivibrators and Schmitt Trigger using op-amp.
- 6. Phase shift and Wien bridge oscillators using op-amp.
- 7. Astable and monostable multivibrators using NE555 Timer.
- 8. PLL characteristics and its use as Frequency Multiplier.
- 9. DC power supply using LM317 and LM723.
- 10. Study of SMPS.

SIMULATION USING SPICE

- 1. Simulation of Experiments 3, 4, 5, 6 and 7.
- 2. D/A and A/D converters (Successive approximation)
- 3. Analog multiplier
- 4. CMOS Inverter, NAND and NOR